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ABSTRACT

A simple practical numerical method for estimating the wave
resistance and the wave pattern of a ship operating at low Froude number
is presented. The method is based upon approximating the two-fold
integral over the ship-hull surface involved in the usual basic expression
for the far-field wave-amplitude function by a one-fold integral around
the ship mean waterline.

ADMINISTRATIVE INFORMATION
This study was funded under the David W. Taylor Naval Ship Research and Development

Center’s General Hydrodynamics Research program, Program Element 61153N, Project Number

SR02301, Task Area SR0230101, Work Unit 1542-109.
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INTRODUCTION

A numerical method for evaluating the near- and far-field wave potential and the wave resistance
of a ship advancing with constant speed in calm water within the theoretical framework of the
Neumann-Kelvin theory developed in Noblesse [1] was recently presented in Barnell and Noblesse [2]).
The numerical results obtained in the latter study show that a very large number of panels must be used
for approximating the ship-hull surface for small values of the Froude number. The numerical method
presented in [2] therefore becomes less practical at small Froude numbers, as is indeed noted in the
conclusion to [2].

A complementary numerical method useful for small values of the Froude number is presented in
this study. The method is based upon approximating the two-fold integral over the ship-hull surface
involved in the usual basic expression for the wave-amplitude function by a one-fold integral around the
ship mean waterline.

The low-Froude-number numerical method presented in this study can be further simplified and
rendered more efficient by using an analytical approximation for the one-fold integral around the ship
waterline obtained here. This analytical approximation, valid for sufficiently-small values of the Froude

number, is presented in Part 2 of this study. Numerical applications will be presented in Part 3.

*A complete listing of reterences is given on page 17.

’ \';W")"I)V."'{“ )

b A k]
14 I"v'.:' ‘.f K

S
Wl

- v e v v
.

v

e




kS

’

A, ' ‘
BASIC EXPRESSIONS FOR THE FAR-FIELD v

WAVE-AMPLITUDE FUNCTION .

This study considers the steady potential flow due to a ship advancing with constant speed in ‘:

. -~ = Y
3 calm water of infinite depth and lateral extent. Nondimensional coordinates x = X/L and flow »‘
b variables are used, with the length L and the s{:eed U of the ship and the density ¢ of water selected for 4
reference. The mean free surface is taken as the plane z = 0, with the z axis pointing upwards, and the -

Al

x axis i1s chosen in the ship centerplane and pointed towards the bow. :{-

Equations (42) and (32) in [1] yield the following expressions for the nondimensional wave N

resistance r = R/@U2L2 and the nondimensional velocity potential ¢ = ®/UL far behind the ship: by

nr o= f 1K) ||?pdt, (1 2

0 .

- (o] - - A5

n$(§) ~ f Im[E | (t;8) + E _(t;€)] K(t) dt, 2) o

5 where E i(t;{) represents the exponential function ‘
E, (GE) = expv3p{p +i(E £ tn)}]; (2a)

Furthermore, p is defined as E

: p=(+y'? @
v is the inverse of the Froude number, that is S

cor @ :

p

and K() represents the far-field wave-amplitude function defined by equation (36) in [1]. -

The tunciion K(t) may be'expressed in the form R
Kty = K (0 + K_(t), (%) N

where the functions K (1) are given by i

K, = /E M2+ 64 -0 tody +ivipd) 1, dl hy

I

+ v2f exp (vipZ2) E , (n, +vipXn ,)da. (6) ’

h
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Iﬁ this equation, E , represents the exponential function

E, = exp[-ivp(x £ty)}; )
Furthermore, ¢ and h represent the positive halves of the mean waterline and of the mean wetted-hull
surface, respectively. The unit vector tangent to ¢ and pointing towards the bow is denoted by -t.(tx,ty,O),
H and h’(nx,ny,n,) is the unit vector normal to h and pointing into the water, as is indicated in figure 1.
The term n , is defined as

n, = —n,+i(n,+tny)/p. ®)

Also, dl and da represent the differential elements of arc length and of area of ¢ and h, respectively.

Finally, ¢s¢(;) represents the disturbance potential at the integration point X on c or h, é, represents the

derivative of ¢ in the direction of the tangent vector t to ¢, and ¢4 is the derivative of ¢ in the direction

of the vector n x t, which is tangent to h and pointing downwards as is shown in figure 1.

For large values of v, or more generally of vp, the exponential function exp(v2p2z) in the hull-

surface integral in equation (6) vanishes rapidly for negative values of z. Therefore, only the upper part

of h yields a significant contribution and the hull-surface integral can be approximated by a line integral

along ¢ in the low-Froude-number limit. This low-Froude-number asymptotic approximation of the far-

field wave-amplitude function in terms of a waterline integral is obtained in the following section.

s
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Figure 1 - Definition Sketch for a Single-Hull Ship with
Port and Starboard Symmetry




LOW-FROUDE-NUMBER APPROXIMATION TO THE FAR-FIELD
WAVE-AMPLITUDE FUNCTION IN TERMS OF A WATERLINE
INTEGRAL

The mean waterline ¢ can be represented by the parametric equations

x =xg(A)and y =yoR), ‘ (9a,b)
where the parameter A varies between its bow and stern values, that is Ag=A=<Ag. In the vicinity of c,
the hull surface may then be represented by the parametric equations

X=XgA) + XAz + X922 + . .. (10a)

Yy =YolAd) + ¥,(0)z + y,(A)z2 + . . . (10b)
where Ag<1=<ig and z<0.

Equations (7) and (10a,b) yield

exp(vpZz) E, = Ey* exp[v2pX(l —iy, t)z]

cexp[-ivpHy,tz24+y5223+ L)), an

where E,* represents the exponential function

Egt = exp(—ivip2y,y3), (12)

and y, *, n>0, is defined as

Ynt = (Xpxty,)/p. (13)
The Taylor series of the exponential function exp[ —iv2p2(y,*z2+y3xz3+ .. )]s
exp[ —ivlpdy,tz2+y;3t23+ .. )] =

1-ivdp2sy,t

—vipizd [iyy £ +vip(y,1)2/2) + . .. (14)

The parametric representation (10a,b) of the hull surface yields

nda = mdidz, (15)
where the normal vector m to h is given by

m = (3x/9A) x (3X/d2). (15a)

Equations (10a,b) then yield

34

........
........

................................................




i
; where the vectors m, have components 5
‘“.‘n = (mp¥, my¥, my?) :;
given by ‘
mX=y,, my=—-x,', (16a,b) E
My> = Xo' ¥1=Yo' Xps V (16c) ¢
. mZ=xy"y -y X; + 2Xg'y2- Yo' X2 (16d) :
s
Y my? = X3" ¥ —Yy' Xy + 2X; 'Y~ ¥ X)) + 3(Xg'Y3-Yo'Xy)- (16¢) {\
h In equations (16a-e), and hereafter in this study, the superscript ' denotes differentiation with respect to :'
A. Thus, we have x' = dx,(R)/dA. e
) The potential $(A,z) on h in the vicinity of ¢ may be expressed in the form E
$=doh) + &)z + doM22 + . . . . an K
Equation (15) yields
; (n,+vpHn  )da = (m,+vp%m ) dAdz, (18) "'
‘ where we have ::
. m, = -—m, + i(myttm,)/p (19) '
in accordance with equation (8). By using equations (16) and (17) we may obtain
m +vpRm, = vpHgmgt -4
: + [mg*+vIp2z ($gm * + ¢ myt)] ‘;-ﬂ
q +z[m* + vip22(¢gm, T +ém T +mpT)] + .. ., (20) ':. !
; where we have ,‘
‘ m,* = —m.? + m*+tmy¥)/p. 21 =
: Equations (20) and (14) then yield k
’ (m, +v2pXm ) exp[ -iv2pAy, t22+y3223 + .. .)) :-
=vipXgngt + F1t +z2F,t + ..., (22)
where we have "
Fit = mg* + vipZz($gm;* +¢, my*) ~

~ivipRzgmyty,t, (22a)

.......................
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Fpt = m* + vipZ(§gmy* +4;m;* +¢,mp* i mgly, )
—ivip9z2§g(m Ty, +motyy ) +$mgty, ]
— vBpbz3gm 2 (y, )22, (22b)
Equations (11), (18) and (22) yield
l exp(vp%) E . (n, +vp4n ) da =
: Eot(vpXgmot +F 2 +2F,* + . .. ) exp[v2pX1 —iy, *)z] dA dz.

We then have

/exp(vzp}z)EI(nx+v2p2¢ni)da = f
h

Ap

Ag
Egtl, dA, 23)

where 1, represents the integral

0
I, =/ (vpHgmyt +F * +2F,% + . . . )expvp1 —iy, *)z] dz. (24)

The lower limit of integration in the integral (24) may be taken equal to —oo. We have

0
/ znexp[vip(1 —iy *)z}dz = (- 1)'n! F2n+2q2n+2y )+, (25)

where q and u , are defined as
= 1/p = (141~ 122, (26)
u, = 1/(1-iypt) = [1-i(x; £ty)/p} - L 27
Equations (3) and (13) were used in equations (26) and (27), respectively. By using equations (22a,b) and

(25) in equation (24), we may obtain

I, =u.$gngt + Fq2u Gt + Fig%u ,)2G,* + ..., (28)
where G, * and G, * are defined as

Gyt =yp —u,($gm* +4;mp?) - 2i(u ) Hgmy ty, *, (28a)

Gy = -y + 2u,(dgmyt +¢ym* +¢myt —iyy'yy*)

+6i(u ) dglmy Tyt +mytyyt) + dmyty,y ]

- 120, ) ¥gmy (2 *). (28b)

52y 2y Ny vy ay =y
a ﬂ-.

RSO
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Equations (17) and (10a,b) yield
$(Xg+XxZ+ ..., YptYZ+ ..., 2) =
$(x0.¥:0) + &2 + . ..
By expanding the potential in a Taylor series about the point (xq,y(,0), we may then obtain
¢ = X9, + )’1¢‘y + ¢,
where ¢,, ¢,, ¢, represent the derivatives of ¢ with respect to x, y, z. We have

2

I

Vo<l = (d 0+ f +gn X1,

direction n to h. We then have
NN N nzty¢d'
We may similarly obtain

9y

Ny, + Ld + n,tdg,
¢, = ndy + 0ty — Nyl
Let D be dehined as
D - 1.n L+ (Xt =y ton,.
Equations (29), (304,b,¢) and (31) then yield
$a DIy b — ¢y,
where the relation xn_ + yyny + n, = n+dx(A,z)/dz = 0 was used. We then have
Ny o éy 4 ivpé = ivpd + n2 + ¢nt /D
o LN AN S PO L W O .

On the mean waterline we have z = 0; equations (15), (16) and (16a,b,c) then yield

ny v, bl e e
hl IS
n, vy ol + 2
ANER
n, e (el

where u and ¢ are detined as
. P91/
u - l(\() )3 (¥ )"]l' 2,

£ By Ny N v

s g vt A Aol s i g it A i AP A A N YA S
> Ca e T e - - e T T C

(29)

where 7 represents the unit vector along the x axis, and ¢, is the derivative of ¢ in the outward normal

(30a)

(30b)
(30c)

(3hH

(32)

(33a)
(32b)

(33¢c)

(34)
(35)
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Furthermore, we have

. ¢ =40
dl = uda,
ty = —Xp'/u, ty = -Y¥o'/u,
¢ = “%'/U,

o 2 g AN e 00T T g gl Noat &7 Wb - TR Pk b b g TRy RPN o

(36)
(37
(38a,b)
(39

where ¢, = d$y(1)/dA. Equations (32), (31), (33a,b,c), (34), (35), (36), (37), (38a,b) and (39) then yield

(0,2 +t,d ~n,t $g +iviphit, dl = —ly,’ di,
where 1 is given by
I =ivlpéy + H /ud(1+¢2)
with H defined as
H, = (y9')? + eyg'ud,
+ [(1+eDxy" —eyg' (X)X +Y Yo' ) uldy'.

Equations (40), (7), (9a,b), (12) and (13) then yield

fE L (32+0,4 nzty¢d + i1/2p¢)ty dl
c

Ag
- - Eotly,’ dA.
A

B
Equations (6), (23) and (43) yield

Ag
Ki(t) = EOiAi dA,
Ag
where A |, is given by
A, =, -ly,.
By using equations (28) and (41) in equation (45), we may obtain
A s = Vz(l_limoi ~ipy0')¢0—y0'H|/u2(l +£2)
+q%u,Gt + Fq%u )G, t + ... .

PN Y S A R N S O AL
) A

(40)

41)

(42)

43)

(44)

(45)

(46)

St
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Equations (27), (21), (16a,b,c), (13) and (3) yield

u,my* -ipyy’ = Fi(Xg' £tyy') t/pFiyu,.
Equations (12), (13) and (26) then yield

vIEgt(u,my* ~ipyg')bg = +tqlEg(tqFiyu +90l’

¥ qEpt{(taF iy u 4 éol’, @7
where the superscript ' denotes differentiation with respect to the parameter A. By using equations (45),
(46) and (47) in equation (44) we may obtain

K,.(t) = +q[Eq*(tqFiy u 1%1:'5
B

S/

2 +

+q A Eo aidl, (48)
B

where a , is defined as

a, =u,a;* + FqXu,)G* +..., 49)
with a| * given by

a;* = FplitaFiyPu,éol’'/u,

- pyy'Hy/ul1+e2u, + G *. (50)

At the bow, we have y =0 for z=<0; equation (10b) then shows that we have y (1) =0 for 1=1g
and n=0. Equations (12), (13), (26) and (27) then yield

+ qF t(qFivu ,$g = = tq2lexp(—ivZpxgldy/(1 —iqx,)
for A=Ag. Equation (5) then shows that the contribution of the first term on the right side of equation
(48) to the function K(t) is null for A=Ag. The contribution of this term clearly is also null for A=Ag in
the usual case of a ship with a closed stern. For a potential-flow-model involving an open-stern ship-

and-wake extending to downstream infinity we have $,—~0 as x——o0, and the first term on the right side

LRRPRURAL |

) ORI

REATAIAL

of equation (48) therefore also vanishes for A=Ag. Equations (5) and (48) then yield ._.
1}
Ag 3
K(t) = qz-/ (E0+a+ +Eoﬁa_)dA. (51) ‘::
Ag

. :_
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By using equations (42), (28a), (13), (27), (35), (21) and (16a-d) into equation (50) we may obtain,

after some algebraic manipulations

ajt = yo'A,/(1+€) + 2q(xy’ £tyy')u,)?B 4

+ Cobg’ +uD /(146D + ipy o’ — Yo' $), (52)

where A, B,, C, and D, are defined as

A, = [(1+pyg'/u)(1 —pyg' /u)+€2] + i(Pyg’ /W)y (Xo’ £tyg')/u +el, (53a) §
o>
'r-

¥
; B, = q(y;Ftxy + i(y;x3—- Xy, (53b)

C, = (Ft—-pXy'yy' /ud +(pyy’ /u)2e(x;Xo' +¥1¥0')/u(l +€2)]

+ [y (X' £tyg Y u+elPxy’ /u—(pyy' /WX X' +¥¥o')/u(l +€2)), (53¢) 4

2o Py

D, = [(x¢' tyg)ull(1 +e)(y, tigthu, + i(pyy'/uley]

(53d)

Vo

- (pYo' /u)e(pyq' /u — ie).

In the particular case when x,’ +ty,' = 0, equations (3), (34) and (35) yield px,'/u= —t,

PYo'/u= 1, (X;Xg' +¥¥o')/u= —q(tx;Fy,) and £ =q(ty, £x,). Equations (52) and (§3a,c,d) then yield

"rf"}fv"{

a;* = =+ efliyy’ +(py; Fit)do' Fué)/(l £ie)

+ip(Y1$o’ — Yo' ¢ ifxy" tyy’ = 0. (59

Furthermore, if the hull surface intersects the free-surface plane orthogonally at the point (x(,y,0) of

the waterline for which x' £ty,’ =0, we have n,=0. Equation (33¢) then yields ¢ =0 and equation (54)

pecomes N
a;* =ip(y ¢y’ —¥o'dp ifxy’ £tyy’=0andn,=0. (55) E
Equations (38a,b), (39), (29), the identity ¢, =tx¢x+ty¢y, and equation (35) yield
(Vi90' —Yo'$)/u=—ed,+t.4,. ,-
Equation (55) then becomes ::
N

a;* = iF%py,'¢,, ifxg' xtyy’ = O0andn, = 0. (56) o

, Equations (49) and (56) then show that the amplitude function a , in equation (51) is of order F2 at a

point (xq,y,,0) where the phase of the exponential function Eg* = exp[—iv2p(xot1tyg)] is stationary, oY

that is where x’ £ty,’ =0, if the hull intersects the free-surface plane orthogonally at that point.
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SUMMARY OF RESULTS
The mean waterline is represented by the parametric equations
x =Xg(A) and y = y4(A), 7
where the parameter A varies between its bow zind stern values, that is
Ag <A < g (57a)

In the vicinity of the mean free surface, the hull surface is represented by the parametric equations

x=xg(0) + x;(M)z + x,(A)z22 + . . ., (58a)
Y=Y + ¥,z + yo(A)z2 + . . ., (58b)
where A\g <1 <Agandz <0. (58¢)

The velocity potential ¢(A,z) on the hull surface in the vicinity of the plane z =0 likewise is expressed in
the form

$=¢()) + $;(M)z + $5(N)z2 + . .. . (59)
Differentiation of the functions x,(A), y,(1), ¢,(2) with respect to the parameter A is denoted by the
superscript '; thus, we have xo' = dxy(A)/dA.

For sutticiently small values of the Froude number F, the far-field wave-amplitude function K(t)
is given by the one-told integral

L
K() = g (Egta, +Ey~a _)dj, (60)
Ay

where we have

q- L'p - L(l+tH172 (61)
and E* and a ., are the exponential function and the amplitude function defined below. The
exponential function kg * is given by

Ey*t = exp[-ivp(xgttygl, (62)
where v is the inverse of the Froude number, that is

v = 1/F. (63)
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The amplitude function a , is given by

a, =u.at + Fqu, )t + ...,
where u  is defined as
u, = 1/[1-iq(x; £ty)], _
and the functions a, * and a, * are now defined.
The first-order amplitude function a, * is given by
a1t = yo' A, /(1+€2) + 2q(xg’ £tyy')u,)?B ¢
+C.ég +uD $)/(1 +€2) + ip(y, 4o’ Yo',
where we have
u = [(xo')? + (¥o" )32,
€= (yo'X;—Xo'¥p/u,
and the coefficients A, B, C, and D, are defined as
A, = [1+pyy /u)(1-pyy' /u) +€2
+ i(pyo' /W)y (Xg' £tyy')/u+e],

= q(yy Ftxy) + i(y X3 —Xy2),

H

C, = (Ft-pZxy'yo' /ud) + (Pyy /W) Z(x X" +Y¥ Yo' )Vu(l +€2)]
+ iy (%o £tyy')/u +e][pPXg’ /u—(Pygy' /u)e(XXg’ +¥ Yo' )/u(l +¢2)),
D, =[xy’ £tyy)ull(1 +ed)(y, igt)u , +i(y,' /u)ey;l

~ (Pyo' /u)e(pyy’ /u — ig).

+

The second-order amplitude function a,* is given by

o

[ V]
+
]

=y + 2u (bgmyt +ém T +émot —iyy'y,*)

+

6i(u ) 2[do(m) Ty, * + my*y;2)+4ymoty, ]
12(“ t)3¢(fn0i(yzi)2’

where we have

Yn1 = q(xnttyn)’

m,* =y, + iqly, Ftx,'),

(64)

(65)

(66)

67

(68)

(69a)

(69b)

(6%)

(69d)

(70)

an
(72)
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with i:

Ko = €U, (72a) \
M =Xy =YXy + 2(X¥0" —Y2Xo')s (72b) ' ]

' M2 = XiYy' —Y X" + 20Xy  —¥2Xy ') + IX3yp' ~Y3%o')- (72c) . ':
" At a point where the phase of the exponential function E* is stationary, that is at a point .
(Xp,¥,0) where we have x’ +ty,’ =0, the first-order amplitude function a, * takes the form ;;

a t = xefiyy’ +(pyyxit)dg’ Fud /(1 tie) + ip(y 99’ —Yo'¢y) '

ifxg £tyy" = 0. 73) of

Furthermore, if the hull surface intersects the plane z =0 orthogonally at a point of stationary phase we

have ‘ft

a1 =iFpyy'd,, ifxp xtyy’ = Oandn, = 0, (74) 2

f and the amplitude function a , then is of order F2, E
The low-Froude-number approximation (60) for the far-field wave-amplitude function is well ) {
suited for numerical evaluation, as is shown in the next section. An analytical approximation to the ;’

integral (60) may also be obtained by taking advantage of the rapid oscillations of the exponential . '_

g function Ey* in the low-Froude-number limit. This analytical approximation is presented in part 2 of
: this study. o
For sufticiently small values of the Froude number, it may be acceptable for practical ."

applications to approximate the velocity potential by its zero-Froude-number limit, in which the free ::

surface becomes a rigid flat wall. This simple approximation for the potential, together with the low- ."

Froude-number approximation for the far-field wave-amplitude function obtained in this study and the

"“ '- .'—’..? ‘,‘

well-known integrals (1) and (2) defining the wave resistance and the far-field potential, provide a

2,0
[ 4
l'

simple practical numerical method for estimating the wave resistance and the wave pattern of a ship

operating at low Froude numbers.
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NUMERICAL EVALUATION OF THE LOW-FROUDE-NUMBER APPROXIMATION TO THE
FAR-FIELD WAVE-AMPLITUDE FUNCTION

The functions x, (1) and y,(A), where k =0__3, in equations (58a,b) can be determined numerically
by considering the four waterlines z= —kd, where k =0__3 and d is sufficiently small in comparison
with the (nondimensional) ship draft d (= D/Li; for instance, d might be taken equal to d/10. Each of
these four waterlines can be subdivided into an equal number, say n, of segments. The set of 4(n + 1)
nodal points (Xjk» ¥jx» —kd), where j=1_(n+1) and k =0__3, define n + 1 constant — A lines A=Aj in the
parametric representation (58a__c) of the upper hull surface. For a given value A; of A corresponding to
any one of these constant — A lines, the values xg(Ay) and yk(lj) of the four functions
Xi(4) and y, (A), where k =0__3, can be determined by fitting cubic polynomials through the points
(xjx, —kd) and (vjk» — kd), respectively, for k =0__3. Specifically, the cubic approximation to the
function x(A;,z) takes the form

X(A,2) 2 Xjo + (Xj0—X;)2/8) + (Xj9— 2X;; +X;)(2/0)(1 +2/6)/2

+ (x50~ 3xj| + 3xj2— xj3)(z/d)(l +2/8)(2+2/8)/6.
A similar cubic approximation may be defined for the function ¥(4;,2). The values Xi(4;) of the
functions x,(A) in equation (58a) corresponding to the foregoing cubic approximation to the function

X(4;,2) then are given by

XolA) = X, (75a)
X1(4;) = (11x;9—~ 18%; + 9%, — 2x3)/64, (75b)
Xa(A)) = (2%} — 5%y +4x, —X;3)/2d2, (75¢)
X3(4)) = (xj0— 3% +3xj2—xj3)/6d3. (75d)

The values yk(/\j) of the functions y, (1) in equation (58b) are defined in terms of the y-coordinates Yik of
the nodal points by similar expressions.

The values ¢k(Aj) of the functions ¢, (1), where k =0__2, in equation (59) can be determined in a
similar manner by fitting a quadratic polynomial through the points (¢jk’ ~kd), where k =0__2 and ¢jk

represents the value of the potential ¢ at the nodal point ko Yio — kd). This quadratic approximation
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is given by
$(A;,2) v djo + (40— $)@/0) + ($j0— 2851 +$5)(z/8)(1 +2/6)/2.
The corresponding values ¢k(Aj) of the functions ¢,(A) then are given by
bok;) = 4, _ (76a)
$1(8)) = (34j0—44;; + $;2)/26, (76b)
$2(4) = (90— 2¢;, + $;2)/242, (76c)
The values ¢k(lj), where k =0__2, and the values xk(A;) and Yi(A;), where k =0_3, determined in
the manner explained above for a set of n + 1 values A; of the parameter A can be used as base-values for
determining the functions ¢, (1), x,(A) and y, () for a denser set of values of A, for instance by using
cubic-spline interpolation. The integral (60) defining the far-field wave-amplitude function can then be
evaluated numerically by dividing the top waterline into a sufficiently-large number, say N, of segments
which may be treated as straight and within which the amplitude function a , may be regarded as
constant. Specifically, the integral (60) becomes
K(t) n g2 'El A4 1—A) @+ * +a;7 1), (7
j=
where a; * represents the mean value of the amplitude-function a, within the segment [4;,4;, ], and

I; * is the integral defined as

i
lJ = Ejt '/(; C)(pl-‘il/zp(ej+|t - ()Jt)“] dy,

with Ej * and Bji detined as

Ej* = exp(~ivipB;t)and 6;* = xo(k;) ttyyA)).
Likewise, we have

Ej it =exp(~ivip8;,  t)and 8, 1 = xy(A;, ) tiyd, ).
The integral I;* may readily be evaluated analytically, with the result

lji = (Eji+Ej+|1)/2 lfGJI = Oj” ".

It = iFZq(EjHi—Eji)/(BjHi ~6;t) if6;r#6,,,*.

16




.....

P B R A DA N L) B el S BN S S e e i MM R I s g I et ol et ok el St e Bk gt & 8 A8 E N'm g4 ha Bundae 2b ~T

The number of segments into which the top waterline must be divided increases as the Froude
number decreases [2]). The foregoing numerical method thus becomes less efficient as F becomes
smaller. However, it obviously is considerably more efficient to evaluate the (one-fold) waterline integral
(60) than the (two-fold) surface integral involved in the basic expression (6) for the far-field wave-
amplitude function. Furthermore, an analytical approximation to the integral (60) may be obtained by
taking advantage of the rapid oscillations of the exponential function Ey* at small values of the Froude
number, as was already noted. This complementary asymptotic approximation is presented in part 2 of

this study.
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